
Tecnologia (223)
MAGICBIOMAT: al via il progetto per sviluppare materiali bio-based circolari con biodegradabilità programmata
07 Feb 2025 Scritto da Università degli studi di Padova
È ufficialmente iniziato MAGICBIOMAT, un progetto ambizioso che mira a rispondere alla sfida globale dell’inquinamento da plastica, sviluppando materiali innovativi, biodegradabili e rispettosi dell’ambiente, pensati per diverse applicazioni.
Il progetto, finanziato nell’ambito di Horizon Europe dall’Unione Europea, è coordinato dalla Technological University of the Shannon: Midlands Midwest (Irlanda), con la partecipazione di sette partner europei: Università degli Studi di Padova (Italia), Organik Kimya Sanayi veTicaret AS (Turchia), DIGIOTOUCH OU (Estonia), Centre Technique Industriel de la Plasturgie et des Composites (Francia), Isotech Ltd (Cipro) e The University of Sheffield (Regno Unito). Il kick-off meeting, che si è tenuto in Irlanda il 15 e 16 gennaio, ha riunito i rappresentanti di tutte le organizzazioni partner per dare ufficialmente avvio al progetto.
Il nuovo progetto europeo WET – Water-based Electric Thrusters, coordinato dall’Università di Bologna, studierà i processi fondamentali che regolano la formazione e il comportamento del plasma generato a partire dall’acqua per arrivare a progettare un propulsore elettrico capace di azionare i veicoli spaziali.
Usare l’acqua come carburante, per viaggiare nello spazio. È la sfida di WET – Waterbased Electric Thrusters, nuovo progetto di ricerca Horizon Europe coordinato dall’Università di Bologna. Gli studiosi esploreranno il comportamento del plasma generato a partire dall’acqua per ideare una nuova tipologia di propulsore elettrico da utilizzare sui satelliti spaziali.
"Con questo progetto vogliamo fare un passo decisivo verso la standardizzazione di tecnologie di propulsione sostenibili, in grado di ridurre l’impatto ambientale delle missioni spaziali e di sfruttare le risorse disponibili nello spazio", spiega Fabrizio Ponti, professore al Dipartimento di Ingegneria Industriale dell'Università di Bologna (Campus di Forlì), che coordina l'iniziativa. "Grazie all’acqua, un propellente ecologico e versatile, potranno aprirsi possibilità inedite per l’esplorazione dello spazio profondo, con un occhio di riguardo alla sostenibilità economica e ambientale".
Pubblicato su «Nature» lo studio di un team internazionale di ricercatori delle Università di Padova e Hong-Kong che svela un nuovo materiale “intelligente” di dimensioni nanoscopiche per immagazzinare e rilasciare sostanze in modo controllato.
Studiare materiali innovativi che individuino e catturino sostanze inquinanti per aria e acqua è oggi di fondamentale importanza: un aiuto nella preparazione di questi nuovi materiali arriva dalle capsule proteiche artificiali. In biologia le capsule proteiche svolgono funzioni essenziali in diversi processi, tra cui il trasporto e l’immagazzinamento di sostanze che spaziano dal fragile materiale genetico dei virus al ferro contenuto nelle ferritine.
Idrogeno verde: il catalizzatore dal "cuore di grafene" più efficiente e durevole
23 Dic 2024 Scritto da CNR
Frutto della ricerca di tre Istituti del Consiglio nazionale delle ricerche, è un innovativo catalizzatore a basso costo e ad alta efficienza per la produzione elettrolitica di idrogeno dall’acqua, denominato “Nigraf”. Descritto su Cell Reports Physical Science, incapsula al suo interno una struttura di ossido di grafene
E’ pubblicato sulla rivista Cell Reports Physical Science lo studio relativo alla messa a punto di un nuovo catalizzatore a basso costo ed alta efficienza denominato “NiGraf” per la produzione elettrolitica di idrogeno dall’acqua, frutto di un team del Consiglio nazionale delle ricerche composto da ricercatori e ricercatrici dell’Istituto di cristallografia del Cnr di Bari (Cnr-Ic), dell’Istituto dei composti organometallici del Cnr di Firenze (Cnr-Iccom), e dell’Istituto per lo studio dei materiali nanostrutturati del Cnr di Palermo (Cnr-Ismn).
La chirurgia del futuro ripara le articolazioni con biomateriali e stampanti 3D
17 Dic 2024 Scritto da Università di Pisa
Al via il progetto europeo LUMINATE coordinato dall’Università di Pisa
Si chiama EndoFLight, è un rivoluzionario strumento chirurgico avanzato per riparare le articolazioni con biomateriali e stampanti 3D. Il dispositivo sarà sviluppato grazie a LUMINATE, un progetto coordinato dall’Università di Pisa e finanziato dall’Unione Europea nell’ambito del programma di ricerca e innovazione Horizon Health 2024.
“EndoFLight utilizza una combinazione di tecniche di biostampa 3D, cellule del paziente e biomateriali avanzati, per riparare le cartilagini delle articolazioni in maniera personalizzata – spiega il professore Giovanni Vozzi del Dipartimento di Ingegneria dell'Informazione dell’Università di Pisa e responsabile di LUMINATE - Il sistema ha una piccola telecamera che viene inserita nell'articolazione durante l'intervento per scansionare la lesione e determinare la dimensione e la forma dell'area danneggiata grazie ad algoritmi di intelligenza artificiale, quindi EndoFLight riempie la lesione con biomateriali avanzati studiati appositamente per integrarsi con i tessuti circostanti e promuovere la rigenerazione della cartilagine”.
Team di ricerca internazionale guidato da Padova osserva per la prima volta vetri resistenti all'irraggiamento e apre nuovi ambiti di applicazione.
Una nuova ricerca sui vetri pubblicata sulla prestigiosa rivista «Reports on Progress in Physics» fa luce sull'interazione tra materiali amorfi e radiazione X. Lo studio, sviluppato nell’ambito di una collaborazione tra il gruppo Sistemi Disordinati (https://disorderedsystems.dfa.unipd.it/) del Dipartimento di Fisica e Astronomia dell’Università di Padova e gli scienziati del sincrotrone tedesco PETRA
III presso il Deutsches Elektronen-Synchrotron (DESY), ha svelato come vetri preparati con metodi diversi rispondano all'irraggiamento con raggi X.
Uno studio condotto dall’Istituto di nanotecnologia del Cnr e dal Center for Life Nano- & Neuro-Science dell’Istituto Italiano di Tecnologia di Roma in collaborazione con l'azienda D-Tails ha portato, per la prima volta, all’introduzione di una tecnica di super-risoluzione senza scansione che sfrutta i movimenti oculari involontari legati alla determinazione delle distanze e al miglioramento dell'acuità visiva. Il lavoro è stato pubblicato sulla rivista ‘npj Imaging’.
L'esame del fondo oculare sta acquisendo sempre maggiore importanza grazie alla sua potenzialità di estendersi oltre le patologie oculari, utilizzando la retina come una finestra sul sistema nervoso centrale per la diagnosi precoce e il monitoraggio delle malattie neurodegenerative. In questo contesto, è essenziale sviluppare una “fundus camera” (ovvero una camera le cui ottiche sono sviluppate specificatamente per lo studio del fondo dell’occhio), che offra alta risoluzione (super-risoluzione), alta specificità (imaging in fluorescenza) e che funzioni senza ottiche di scansione (scan-less) per rilevare precocemente biomarcatori molecolari delle malattie neurodegenerative.
Circuiti elettrici su foglie, lenti e bucce d’arancia: a Pisa le nuove frontiere della microelettronica
21 Nov 2024 Scritto da Università di Pisa
Un dispositivo elettronico ultrasottile, dello spessore di tre micron, può essere applicato a tutti i tipi di superficie, irregolari, curve, delicate e flessibili, come foglie, lenti ottiche o bucce d’arancia.
Realizzato dal team di ingegneri elettronici del Dipartimento di Ingegneria dell’Informazione (DII) dell’Università di Pisa, rappresenta un grande passo avanti nelle ricerche sull’elettronica conformabile, arrivando a realizzare dispositivi funzionanti su superfici così sottili da poter essere applicate ovunque.
La ricerca, frutto di una collaborazione tra Università di Pisa, IIT Milano e EPFL, è stata pubblicata sulla prestigiosa rivista Nano Letters.
Un catalizzatore a base di cobalto (in centro) promuove la conversione di molecole di acetilene (a sinistra) in molecole di etilene (a destra) mediante l’impiego della luce come fonte energetica.
Studio dell’Università di Padova rivoluziona i processi chimici di produzione di etilene puro con la luce solare per un futuro più sostenibile.
L’etilene è la sostanza chimica organica più importante dell’industria moderna: con una produzione annua che raggiunge 200 milioni di tonnellate, le sue applicazioni spaziano dalla produzione di circa il 60% di tutte le plastiche alla gestione agricola, fino alla sintesi di numerosi prodotti chimici e composti organici.
Oggigiorno l’etilene viene prodotto principalmente attraverso la pirolisi petrolchimica di idrocarburi, un processo industriale che introduce delle impurezze di acetilene che limitano il diretto utilizzo dell’etilene prodotto. Per questo motivo, in industria, l’etilene deve essere prima purificato dall’acetilene in un processo di trasformazione che attualmente presenta grandi problematiche in termini di sostenibilità poiché necessita di alte temperature e metalli nobili – costosi e difficili da reperire – come catalizzatori. Nonostante i progressi compiuti, queste strategie tradizionali per la conversione dell’acetilene in etilene possiedono ancora una selettività relativamente bassa (ossia l’acetilene non viene soltanto convertito nel desiderato etilene, ma una parte di esso viene anche convertito in prodotti non desiderati).
Atomi metallici intrappolati nella "rete" del grafene: così nascono i materiali del futuro
12 Nov 2024 Scritto da CNR
Una ricerca svolta congiuntamente dall’Istituto Officina dei Materiali del Cnr e dalle Università di Trieste, MilanoBicocca e Vienna ha dimostrato un metodo semplice e innovativo per realizzare nuovi materiali che uniscono le straordinarie proprietà manifestate da singoli atomi metallici con la robustezza, flessibilità e versatilità del grafene. Lo studio, pubblicato sulla rivista Science Advances, promette applicazioni nei campi della catalisi, della spintronica e dei dispositivi elettronici.